首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3380篇
  免费   352篇
  国内免费   1352篇
化学   4223篇
晶体学   30篇
力学   250篇
综合类   62篇
数学   54篇
物理学   465篇
  2024年   7篇
  2023年   38篇
  2022年   78篇
  2021年   128篇
  2020年   196篇
  2019年   149篇
  2018年   158篇
  2017年   158篇
  2016年   196篇
  2015年   160篇
  2014年   186篇
  2013年   347篇
  2012年   232篇
  2011年   195篇
  2010年   166篇
  2009年   178篇
  2008年   179篇
  2007年   231篇
  2006年   198篇
  2005年   219篇
  2004年   236篇
  2003年   212篇
  2002年   187篇
  2001年   158篇
  2000年   140篇
  1999年   117篇
  1998年   90篇
  1997年   89篇
  1996年   81篇
  1995年   76篇
  1994年   84篇
  1993年   50篇
  1992年   42篇
  1991年   27篇
  1990年   24篇
  1989年   18篇
  1988年   15篇
  1987年   12篇
  1986年   12篇
  1985年   5篇
  1984年   5篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有5084条查询结果,搜索用时 109 毫秒
11.
The contribution of rheological properties and viscoelasticity of the interfacial adsorbed layer to the emulsification mechanism of enzymatic modified sugar beet pectin (SBP) was studied. The component content of each enzymatic modified pectin was lower than that of untreated SBP. Protein and ferulic acid decreased from 5.52% and 1.08% to 0.54% and 0.13%, respectively, resulting in a decrease in thermal stability, apparent viscosity, and molecular weight (Mw). The dynamic interfacial rheological properties showed that the interfacial pressure and modulus (E) decreased significantly with the decrease of functional groups (especially proteins), which also led to the bimodal distribution of particle size. These results indicated that the superior emulsification property of SBP is mainly determined by proteins, followed by ferulic acid, and the existence of other functional groups also promotes the emulsification property of SBP.  相似文献   
12.
For the first time, intensification of monooleoyl glycerol (MOG) synthesis has been investigated in an ultrasonic-infrared-wave (USIRW) promoted batch reactor. Esterification of octadecanoic acid (ODA) with glycerol (Gl) has been conducted [using Amberlyst 36 wet catalyst] in three different reactors, namely traditional batch reactor (TBR), infrared wave promoted batch reactor (IRWPBR), and USIRW-promoted batch reactor (USIRWPBR) to assess the relative efficacy. The energy-efficient USIRWPBR remarkably intensifies the ODA-Gl esterification as manifested through superior ODA conversion (92.5 ± 1.25%) compared to that achieved in IRWPBR (79.8 ± 1.2%) and TBR (36.39 ± 1.25%). The most favorable reaction condition for optimum ODA conversion and maximum MOG yield was identified through statistical optimization over a selected parametric range, namely 3-5 Gl/ODA mole ratio, 0.004-0.006 g/mL Amberlyst 36 catalyst concentration, 300-700 rpm impeller speed, and 333-353 K reaction temperature. The present study also reports the formulation and validation of an innovative reaction kinetics, that is, concurrent noncatalytic and heterogeneously catalyzed (CNCHC) reaction mechanism in addition to the conventional heterogeneous kinetic models (LH and Eley-Rideal mechanisms). Under combined USIRW, the CNCHC esterification mechanism could best describe ODA-Gl esterification (R2 = 0.98) compared to LH (R2 = 0.97) and Eley-Rideal (R2 = 0.88) mechanisms. The optimal product (MOG) was characterized by differential scanning calorimetry and thermogravimetric analysis to assess its crystallization property and thermal stability for possible application as plasticizer/fuel additives.  相似文献   
13.
Herein a well-sealed and thermostated kinetics assembly is designed and built, which can run stirred at different reaction temperatures. With the reaction assembly above and the volumetric method together, the hydrogen peroxide (H2O2) decomposition reaction kinetics is systematically investigated under a variety of reaction conditions over a copper-doped buserite-type layer manganese oxide (referred to as Cu-buserite) as a heterogeneous catalyst. The overall second-order rate law is fitted out by the linear regression analysis, with the reaction orders with respect to both H2O2 and Cu-buserite determined to each be equal to 1, and then explicitly explained by the proposed Michaelis-Menten like mechanism. The apparent activation energy Ea is estimated as 33.5 ± 2.5 kJ mol−1.  相似文献   
14.
The construction of nano-scale hybrid materials with a smart interfacial structure, established by using rare earth oxides and carbon as building blocks, is essential for the development of economical and efficient catalysts for oxygen reduction reactions (ORRs). In this work, hexagonal La2O3 nanocrystals on a nitrogen-doped porous carbon (NPC) derived from crop radish, served as building bricks, are prepared by chemical precipitation and then calcination at elevated temperatures. The obtained La2O3/NPC hybrid exhibits a very high ORR activity with a half-wave potential of 0.90 V, exceeding that of commercial Pt/C (0.83 V). Both DFT theoretical and experimental results have verified that the significantly enhanced catalytic performance is ascribed to the formation of the C−O−La covalent bonds between carbon and La2O3. Through the covalent bonds, electrons can transfer from the carbon to La2O3 and occupy the unfilled eg orbital of the La2O3 phase. This results in the accelerated adsorption of active oxygen and the facilitated desorption of the surface hydroxides (OHad), thereby promoting the ORR over the catalyst.  相似文献   
15.
FeOx, TiO2, and Fe–Ti–Ox catalysts were synthesized and used in the catalytic hydrolysis of hydrogen cyanide (HCN). Nearly 100% HCN conversion was achieved at 250 °C over the Fe–Ti–Ox catalyst. TiO2 rutile was detected over TiO2, but not over Fe–Ti–Ox, which suggested that the interaction between Fe and Ti species could inhibit the TiO2 phase transition. Furthermore, the interaction between Fe and Ti species over Fe–Ti–Ox could promote the selectivity of NH3 and CO. The mechanism of hydrolysis of HCN over FeOx, TiO2, and Fe–Ti–Ox can be given as follows: HCN + H2O → methanamide → ammonium formate → formic acid → H2O + CO.  相似文献   
16.
A series of Ce-Fe-Ox catalysts prepared by the different calcination temperatures (marked as CF-X, where X represented calcination temperature) were used to the selectivity catalytic reduction of NOx by NH3. The results explained the relationship between calcination temperature and the sulfate species over Ce-Fe-Ox, and then investigated the surface acidity and catalytic performance. The large amounts of sulfate species were formed over CF-450 and CF-550 while it was decomposed with further the increasing of calcination temperature, which resulted in the loss of surface acidity, causing a decrease in the catalytic activity over Ce-Fe-Ox. Thereby, the CF-450 catalyst showed the best catalytic activity and over 90% NOx conversion was obtained at 244–450 °C. Besides, the favored pore structure, more Fe3+ active species, higher Ce3+ concentration and the abundance of chemical adsorbed oxygen species, as well as the surface acid sites, would together contribute to the excellent catalytic activity of CF-450 catalyst.  相似文献   
17.
The strategy of structurally integrating noble metal and metal oxides is expected to offer exceptional opportunities toward emerging functions of all. We report the creation of an efficient hetero-structured nanocatalyst consisting of Mn3O4 core, SiO2 shell impregnated with noble Ag nanoparticles. The triple nanocatalyst Mn3O4/Ag/SiO2 was synthesized by using a facile three-step approach to disperse Ag nanoparticles between the surfaces of functionalized Mn3O4 and SiO2. The physicochemical structural characterization was performed by XRD and FTIR. The surface morphologies were observed by SEM and TEM. The EDX measurements confirmed the composition of the composite. The nanocomposite has been used as a catalyst for the degradation of Direct blue 78 in the presence of sodium borohydride (NaBH4). It has a drastic catalytic effect as compared to Mn3O4/Ag and Mn3O4. The rate constant of Direct blue 78 reduction followed the order: Mn3O4/Ag/SiO2 (0.25166 min−1) > Mn3O4/Ag (0.07971 min−1) > Mn3O4 (0.00947 min−1). The effects of different reaction conditions of the catalytic reaction have been determined. The catalytic activity of the as- synthesized nanocomposite was examined for the binary dyes system by incorporation of an additional dye (Sunset yellow). Its influence on the degradation rate and efficiency of Direct blue 78 was investigated. The nanocatalyst exhibited excellent catalytic activity towards the complete degradation of both the Direct blue 78 and Sunset yellow. The degradation percentage for these dyes reached 99.33 and 94.68%, respectively. The recovery and reusability of the Mn3O4/Ag/SiO2 nanocomposite was studied in the reduction reaction of Direct blue 78. Five consecutive recovery reaction cycles were performed. They revealed high stability and constant efficiency of the catalyst for four cycles.  相似文献   
18.
界面是由复杂的界面相简化而成的,界面破坏实际是界面相材料的破坏。数值计算为了方便,如经典模型和内聚力模型等,都把很薄的界面相作无厚度化处理。导致只能考虑界面的面力,而无法考虑界面相内的应力(平行于界面方向的应力)。使界面失效准则先天性地排除了界面相内部应力的影响,从界面相材料失效机理的角度来看这是不够严谨的。本文将界面相材料等效为一种弹性连续体,由界面本构关系推导得到了一种新的界面单元。该单元具有界面参数易确定、对界面相物性可以进行等效描述等优点。通过商用有限元软件ABAQUS和用户子程序UEL实现了数值分析,并与直接物理模型的数值模拟结果进行对比,证明了本方法的简便及准确性。通过对不同界面相厚度结构的进一步分析,探讨了本文方法的可行范围。  相似文献   
19.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
20.
Two organometallic Ru(II)‐p‐cymene complexes of the type [Ru(η6p‐cymene)(L)Cl]PF6 1 and 2 , where L is N,N‐bis(4‐isopropylbenzylidene)ethane‐1,2‐diamine (bien, L1 ) or N,N‐bis (pyren‐2‐ylmethylene)ethane‐1,2‐diamine (bpen, L2 ) have been prepared and characterized well. Because of appended pyrenyl groups in coordinated bpen ligand, the complex 2 exhibits higher DNA and protein binding than complex 1 in which isopropylbenzyl groups are incorporated. Interestingly, the luminescent characteristic complex 2 is unique in displaying DNA cleavage after light activation by UVA light at 365 nm through oxygen dependent mechanism. AFM analysis attests the photo‐induced DNA fragmentation ability of complex 2 . Also, the complex 2 cleaves the protein after light exposure in a non‐specific manner suggesting that it can act as a protein photo cleaving agent. In contrast to the trend of DNA and protein interaction of complexes, the complex 1 exhibits cytotoxic activity against human breast carcinoma ( MCF‐7 ) and liver carcinoma ( HepG2 ) with potency higher than that of complex 2 due to enhanced hydrophobicity of isopropyl groups present in p‐cymene and bien ligands. Indeed, complex 2 is inactive against MCF‐7 and HepG2 cancer cell lines even up to 200 μM concentration. The AO/EB staining assay reveals that the complex 1 is able to induce late apoptotic mode of cell death in breast cancer cells, which is further confirmed by inter‐nucleosomal DNA cleavage. Furthermore, the complexes 1 and 2 are evaluated for their catalytic activities and found to be working well for the β‐carboline directed C–H arylation to afford the desired products in good yield (40–47%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号